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ABSTRACT 

This paper aims to identify the key statistical factors that influence the 

threshold and interpretation of p-value significance levels. Our empirical 

analysis provides evidence to better understand the range of high significance, 

moderate significance, and non-significance levels. We thoroughly discuss 

several contributing factors, including sample size (large vs. small datasets), 

standard error, the quality and utility of statistical tests, statistical power, effect 

size, sampling procedures, data collection quality, and the use of both qualitative 

and quantitative research data. Consideration is also given to challenges 

presented by big data. Additionally, we review contributions from prominent 

researchers regarding factors that influence p-values. To support our analysis, 

we generate sets of random sample data (n = 10, 100, 500, 1000, 5000, and 

10000) from well-known continuous and discrete distributions, along with 

observed secondary data, to examine the behavior of p-values under different 

conditions. This study also investigates the question: “Is p-value a reliable 

measure of unknown population characteristics?” We conclude with findings, 

recommendations, and possible remedies based on our empirical results. All 

analyses were conducted using the Statistical Package for Social Sciences (SPSS, 

version 24). 
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1. INTRODUCTION 

P-value plays a central role in statistical inference for researchers, 

clinical investigators, and scientists across various disciplines. It is widely used 

in hypothesis testing and is often viewed as a key metric for making decisions 

about population parameters. A sound p-value, however, is not an isolated 

outcome—it is the result of a rigorous research protocol and the appropriate 

application of statistical data analysis techniques. 
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Researchers frequently rely on p-values to draw conclusions from their 

data, often attaching great significance to whether a result is "statistically 

significant" (typically, p ≤ 0.05) or "not significant" (p > 0.05). However, such 

binary interpretations can be misleading and oversimplified. The reliance on p-

values alone, without understanding their nuances, can result in flawed 

conclusions. Indeed, inferential decision-making should not be based solely on 

p-values. 

 

This raises several important questions: 

● Is p-value the only statistical metric that informs decision-making 

regarding unknown population parameters? 

● Why has p ≤ 0.05 become the conventional threshold for rejecting the null 

hypothesis? 

● Can other statistical factors improve the interpret-ability and usefulness of 

p-values? 

 

This paper seeks to explore the characteristics and influencing factors that 

affect p-values. Several key variables can impact the p-value, including: 

● Effect size 

● Sample size 

● Margin of error 

● Standard error 

● Interval estimates 

● Test statistics 

● Statistical power 

● Good Point Estimators 

● Etc. 

 

A common misconception in research is that a p-value ≤ 0.05 

automatically implies a meaningful or practically significant result, while a p-

value > 0.05 suggests no effect or difference. This binary view is problematic. 

As noted by Neham F. S. (Koreen J. Pain, 2017), “P > 0.05 only means no 

evidence of difference. It does not mean evidence of no difference.” This 

distinction is critical: a non-significant result (p > 0.05) may be due to 

insufficient statistical power, small sample size, poor study design, or other 

methodological flaws. Similarly, a significant p-value (p < 0.05) does not 

validate a hypothesis or imply real-world importance. 

P-values alone cannot confirm the correctness of a research argument. 

A statistically significant result does not guarantee scientific validity, and over 

reliance on p-values can distort decision-making and the interpretation of 
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findings. It is imperative to consider the broader context—including 

confidence intervals, effect sizes, and study design—when interpreting p-

values. 

 

1.1   Effect Size 

Effect Size is a magnitude or strength of relationship between two 

variable and the difference between two groups. In statistical analysis, the 

effect size can be measured by several mathematical approaches: 

1) Standardize mean difference 

2) Odd ratio 

3) Correlation Coefficient 

4) Risk Ratio 

5) Hazard Ratio 

6) Type of statistical test being conducted 

 

Effect Size can be measured in reference with the following formula 

 

Eta Square = d = 
(𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 𝑣𝑎𝑙𝑢𝑒)2

(𝑛−1)+(𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 𝑣𝑎𝑙𝑢𝑒)2 

 

Cohan J. (1988), Statistical Power Analysis for behavioral Sciences NY: 

Routledge Academic summarized the range of Effect Size and Eta Square 

values ‘d’ as under: 

 

Eta Square Value (d) Effect Size 

0.01 

0.06 

0.14≥ 

Small 

Moderate 

Large 

 

Large effect size suggests stronger relationship or large difference 

between variables. Small effects size effect indicates a weaker relationship. 

Theoretical laws show that the relationship between effects size is directly 

proportional with p-value. This relationship is to be illustrated numerically in 

the statistical analysis section. 
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Reference:  http://psychologyinrussia.com/volumes/pdf/2015_3/psychology_2015_3_3.pdf 

 

1.2   Sample Size  

It is technically an influence factor on p-value with increased or 

decreased samples size. The relationship of p-value is inversely proportional, 

because small sample size increases standard error and test statistic will be 

decreased, while large sample size reduces the standard error and test statistic 

will be increased. This is why it is important to choose an appropriate sample 

size when conducting hypothesis tests to ensure accurate and reliable results.  

 

1.3   Test Statistic 

Test statistic is the ratio between margin of error and standard error. 

Large computed test statistic impact positively on p-value. Mathematically, it 

can be computed by
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑒𝑑 

𝑆𝑡𝑎𝑡𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟
. It is very core benchmark statistical 

value to make decision about size of probability of p-value. A general proven 

result is test statistic is inversely proportional to the size of p-value and help 

statisticians to understand Type-I and Type-II statistical error. Several clinical 

trials make better decision in Type-I statistical error.  

 

1.4      A Good Point Estimators  

This is a necessary characteristic for a good point estimator. Parametric 

statistical analysis requires good point estimator for healthy, transparent, and 

acceptable decision making for unknown population. Computing of p-value 

relates maximum dependency at good point estimator. Non-biasedness, 

Consistency, Efficiency, and Sufficiency are four relative properties to identify 

a good point estimator. Margin of error fully based on characteristic of good 

point estimator and margin of error technically and statistically suggests 

suitable sample size determination for the quality of research activities. 

Commonly, method of moments and maximum likelihood are generally 

practiced to find out or suggest to be using a good point estimator.  
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1.5      Interval Estimate of Parameter  

 Interval estimate of parameter is a mathematical statement and range of 

unknown population parameters under given confidence level such as 95%, 

99% or 96% etc. Mathematically, it can be stated as under: 

 

(1 – α)% C. I for Population Mean (µ) = Pr. [ 𝜇𝐿  ≤  µ  ≤  𝜇𝑈] or 

(1 – α)% C. I for Population Proportion (p) = Pr. [ 𝑝𝐿  ≤  p  ≤ 𝑝𝑈] 

etc. 

 

1.6      Types Of Statistical Error  

Types of statistical error can be defined into two significant types such 

as type-I and type-II statistical errors. The Type-I statistical error explains about 

asset of researchers or data analyst. The Type-I statistical error is one good 

outcome and result for research investigators. In this error rejection region is 

going to reduce as compared to assumed level of significance. While Type-II 

statistical error may be increased rejection region. This paper also analyzes to 

critically observe what is the impact of sample size at types of statistical error?    

 

1.7     Power of Statistical Test  

Power of statistical test depend on p-value. In the case of type-I error 

power of statistical test will be increased and in the case of type-II error power 

of statistical test will be reduced at given confidence level. The power of 

statistical test provide performance of manufacture process of fast moving 

consumer goods (FMCG). Therefore statistics hypothesis testing is an 

important tools for quality production management. 

 

1.8     The Central Limit Theorem  

The central limit theorem emphasis and significantly supports that is 

sample size increases then a normal probability distribution approaches to 

approximately normal probability distribution regarding less shape of the 

distribution. According to the Central Limit Theorem “The relation between 

population distribution and sampling distribution is called the Central Limit 

Theorem. In this relationship the shape of sampling distribution approaches to 

the approximate normal distribution, when sample size gradually increases. At 

large enough sample size will demonstrate the very close shape of approximate 

normal distribution of sampling distribution as shape of population distribution.”    
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1.9   The Null, Alternative Hypothesis and P-Value Approach 

         For the p-value approach the likelihood (p-value) of the numerical 

value of the test statistic is compared to the specified significance level (α) of 

the hypothesis test. The p-value corresponds to the probability of observing 

sample data at least as extreme as the actually obtained test statistic. Small p-

values provide evidence against the null hypothesis. The smaller (closer to 0) 

the p-value, the stronger is the evidence against the null hypothesis. If the p-

value is less than or equal to the specified significance level α, the null 

hypothesis is rejected. Otherwise, the null hypothesis is not rejected. If p ≤ α, 

reject H0 otherwise, if p>α, do not reject H0. In consequence, by knowing 

the p-value at any desired level of significance may be assessed. For example, 

if the p-value of a hypothesis test is 0.01, the null hypothesis can be rejected 

at any significance level larger than or equal to 0.01. It is not rejected at any 

significance level smaller than 0.01. Thus, the p-value is commonly used to 

evaluate the strength of the evidence against the null hypothesis without 

reference to significance level. The following table provides guidelines for 

using the p-value to assess the evidence against the null hypothesis (Weiss, 

2011): 

 

P – Value Evidence against Ho 

p – value > 0.01 Weak or no evidence  

0.05 < p-value ≤ 0.10  Moderate evidence 

0.01 < p-value ≤ 0.05 Strong evidence 

p-value ≤ 0.01 Very strong evidence 

 

In this study, we will examine, review and investigate the significant 

features of numerical evidence to find out above highlighted factors’ impact 

on p-value. It will also be suggested to make better infrastructure for desire 

statistical decision making with respect to p-value. 

 

1.10 Effects of Outliers 

      Outliers in any data-set pose a significant challenge for statistical 

inference. The presence of outliers can lead to technical and interpretative 

problems, as they may inflate the standard error and distort estimates of 

central tendency and variability. This can result in misleading conclusions and 

reduced reliability of inferential outcomes. 

Therefore, identifying and appropriately handling outliers is essential 

for statistical validity and compliance with analytical assumptions. In many 

cases, outliers originate from data collection errors, such as recording mistakes, 

instrument faults, or sampling anomalies. Mathematically it can be written as 
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Lower Outlier: Q1 - 1.5(Interquartile Range)     i.e Interquartile Range=Q3 – Q1  

Upper Outlier: Q3 + 1.5(Interquartile Range) 

 

The Illustration of box-plots portrays a better picture of outliers, 

skewed types, and normality of data standardization.   

 

2.  LITERATURE REVIEW 

     Badenes R. L. et al. (2016) quoted clearly that “The “effect size” fallacy 

involves the belief that the p-value provides direct information about the effect 

magnitude (Gliner et al., 2001). In this way, the researchers believe that when 

p is smaller, the effect sizes are larger. Instead, the effect size can only be 

determined by directly estimating its value with the appropriate statistic and 

its confidence interval (Cohen, 1994; Cumming, 2012; Kline, 2013)”. 

0C0oncato J. et al. (2016) mentioned that “P ≤ 0.05 is often 

misunderstood as a rigid threshold, sometimes with a misguided ‘win’ (p≤0.05) 

or ‘lose’ (p>0.05) approach. Also, in contemporary genomics studies, a 

threshold of p ≤ 10−8 has been endorsed as a boundary for statistical 

significance when analyzing numerous genetic comparisons for each 

participant. A value of p≤0.05, or other thresholds”. 

Dahiru T. (2008) mentioned “while medical journals are florid of 

statement such as: “statistical significant”, “unlikely due to chance”, “not 

significant,” “due to chance”, or notations such as, “P > 0.05”, “P < 0.05”, the 

decision on whether to decide a test of hypothesis is significant or not based 

on P-value has generated an intense debate among statisticians”. He also 

advocated “p < 0.05 (5%) significance as a standard level for concluding that 

there is evidence against the hypothesis tested, though not as an absolute rule. 

If p-values is between 0.1 and 0.9 there is certainly no reason to suspect the 

hypothesis tested. If it’s below 0.02 it is strongly indicated that the hypothesis 

fails to account for the whole of the facts”. 

Demidenko E. (2016) mentioned characteristics and relationship 

between null hypothesis and sample size that “The little-known fact among 

non-statisticians is that, with a large enough sample, n, the null hypothesis will 

always be rejected. This fact stems from the consistency of the test: With the 

sample size increasing to infinity, the power of the test approaches 1 even for 

alternatives very close to the null. In other words, with a large enough sample, 

the null hypothesis will always be rejected regardless of the Type I error, α. 

What kind of knowledge does statistical hypothesis testing give?, if it leads to 

only one answer, “Reject the null hypothesis”. 

Gelman A. and Carlin J. (1917) have argued that “the distinction 

between practical and statistical significance does not resolve the difficulties 
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with p-values. The problem is not so much with large samples and tiny but 

precisely-measured effects but rather with the opposite: large effect-size 

estimates that are hopelessly contaminated with noise. Consider an estimate 

of 30 with standard error 10, of an underlying effect that cannot realistically be 

much larger than 1. In this case the estimate is statistically significant and also 

practically significant but is essentially entirely the product of noise. This 

problem is central to the recent replication crisis in science (see Button et al., 

2013, and Loken and Gelman, 2017) but is not at all touched by concerns of 

practical significance”. 

Greenland S. et.al (2016) indicate that “It is true that the smaller the P 

value, the more unusual the data would be if every single assumption were 

correct; but a very small P value does not tell us which assumption is incorrect. 

For example, the P value may be very small because the targeted hypothesis is 

false; but it may instead (or in addition) be very small because the study 

protocols were violated, or because it was selected for presentation based on 

its small size. Conversely, a large P value indicates only that the data are not 

unusual under the model, but does not imply that the model or any aspect of 

it (such as the targeted hypothesis) is correct; it may instead (or in addition) be 

large because (again) the study protocols were violated, or because it was 

selected for presentation based on its large size”. 

Kim J. and Bang H. (2016) mentioned that “There are two ways to view 

a statistical hypothesis test: one is through a p-value (of the test) and the other 

is through a CI (of a parameter). Many busy clinicians use a simple rule, “If p < 

0.05 or the CI does not cover the null value, H0 is rejected.” in practice. The p-

value and CI are complementary while attempting to do the same/similar 

thing, where the p-value quantifies how ‘significant’ the association/difference 

is, while the CI quantifies how ‘precise’ the estimation is and what the plausible 

values are”. 

Kwak S. (2023) mentioned that “In research, a topic to be identified is 

selected and hypotheses are established accordingly. In order to calculate the 

evidence to support this, related data is collected, and the collected data is 

analyzed using a statistical hypothesis test method suitable for the hypothesis. 

The method of statistical hypothesis testing is determined according to the 

type of data corresponding to whether the data is a quantitative variable or a 

qualitative variable, the research design and hypothesis, etc., but in the end, 

the hypothesis test is performed using the significance probability value 

calculated as a result of statistical analysis”. 

Leo D. G and Sardanelli F. (2020) mentioned that according to 

Loannidis, “moving the p-value threshold from .05 to .005 will shift about one-

third of the statistically significant results of past biomedical literature to the 
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category of just suggestive”. “We think that such a solution makes biomedical 

research harder and that, adopting this solution, an improvement in research 

quality is not granted. Lowering this way the p value threshold for significance 

is, at best, a palliative solution. Especially in clinical research, future trials would 

need to be larger, less feasible, and more expensive. Achieving 80% power with 

a threshold of 0.005, instead of 0.05, would require a 70% larger sample size 

for between subject study designs with two-sided tests (88% for one sided 

tests)”. 

Wasserstein R. L. et al. (2019) introduced that “Replace the 0.05 

“statistical significance” threshold for claims of novel discoveries with a 0.005 

threshold and refer to p-values between 0.05 and 0.005 as suggestive”. 

Some other eminent researchers have shown earlier in their research 

study in detail and findings about interpretation, misconception and 

contemporary understanding of p-values in their earlier research work, namely 

Hubbard R. et al. (2008), Lin M. et al. (2013), Kim J. et al. (2016), Marasini D. et 

al. (2016), Lin M. et al. (2013), Ghose A et al. (2011), and Nahm F. S. (2017), 

Gordon L. et al. (2010), Kline, R. B. (2013), Kwak S. (2023). 

 

3.  DATA ANALYSIS 

In this section, we present an empirical analysis of quantitative data to 

explore the relationship between sample size, test values, and their 

corresponding p-values. The analysis aims to investigate how p-values respond 

to varying sample sizes and test conditions, which is crucial for understanding 

the robustness of statistical inference. To achieve this, a series of statistical 

tables and graphs have been constructed to provide evidence supporting the 

central theme of this study. Specifically, test values of μ = 40, 45, and 50 were 

analyzed across multiple sample sizes: n = 10, 100, 500, 1,000, 2,000, 5,000, and 

10,000. The empirical results demonstrate how these variations affect the 

structure and behavior of p-values. The calculated values are in good 

agreement with the base statistical theory known as a bigger sample size 

corresponding to a lower p-value, whereas having a constant effect size in this 

estimate. This serves to verify the purpose of the study by demonstrating 

quantitatively the necessity of the sample size in the hypothesis testing. 

The link between effect size (d), sample size (n), and the resulting p-

values is shown in Tables 1, 2, and 3. These tables' numerical figures 

demonstrate a clear correlation between the two, with the p-value falling as 

the effect size rises. Likewise, the p-value and the effect size needed for 

significance tend to decline with increasing sample size (n). 

These results provide empirical evidence that increasing the sample 

size enhances the sensitivity of hypothesis testing. In particular, larger sample 
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sizes improve the ability to detect small effects and reduce the likelihood of 

Type-1 errors when proper thresholds are maintained. This aligns with the 

preferences of many applied researchers, particularly in industrial and scientific 

contexts, where the reliability of statistical decisions is critical. 

In summary, the construction of the test statistic, along with the roles 

of effect size (e) and sample size (n), plays a crucial part in shaping the p-value. 

Smaller p-values—achieved through appropriate sample sizing—support 

robust hypothesis testing and the identification of statistically significant 

outcomes. 

Table-1 tells us in detail that sample size provide strong evidences to 

conclude sample size is an important factors to influence positively on sample 

means(𝑥), standard deviation 𝑠, standard error 𝑠𝑥, sampling error (e), Test 

Statistic, Confidence Interval of population parameters, and p-values. Our 

outcomes of data analysis of this paper p-value speedily decreasing under the 

sample size increases significantly, such as at n=10, 100, 500, 1000, 2000, 5000, 

and 10000 the p-value is 1.8%, 0.1%, 0.01%, 0.001%, 0.0001%, 0.00001%, and 

0.000001 respectively. It is clearly observed that p-value significantly inspired 

at sample size (n). This outcome also supports Central Limited Theorem and 

theoretical concepts. If we take test value =  𝜇 =  40 margin of error or 

sampling error emerge higher as compared with 𝑛 = 45 and 𝑛 = 50, it can be 

over-viewed in Table-2 and Table-3 critically. In all three cases at computed 

sample means 𝑥 at prescribed sample sizes (n) are same numerical values i.e. 

56.90 (at n = 10), 47,57 (at n = 100), 50.17 (n = 500), 50.23 (n =1,000), 49.65 (n 

= 2,000), 50.17 (n = 5,000), and 50.14 (n = 10,000).  

 

Table no.1: Effect Size (d), Standard Error (𝑺𝒙) Test Statistic, Confidence Interval if n 

increases at Test Statistics,  𝝁 = 40 

Test Value = 𝜇 = 40 

Effect 

Size (d) 
n 𝑥 𝑠 𝑆𝑥 

Test 

Statistic 

95 % Confidence 

Interval 
p-value 

0.479254 10 56.90 18.568 5.872 2.878 3.62 ≤  𝜇 ≤ 30.18 0.018 

0.174712 100 47.57 16.443 1.653 4.578 4.29 ≤  𝜇 ≤ 10.85 0.001 

0.250871 500 50.17 17.595 0.787 12.927 8.63 ≤  𝜇 ≤ 11.72 0.0001 

0.252337 1000 50.23 17.619 0.557 18.362 9.14 ≤  𝜇 ≤ 11.32 0.00001 

0.232237 2000 49.65 17.556 0.393 24.590 8.88 ≤  𝜇 ≤ 10.42 0.000001 

0.250416 5000 50.17 17.597 0.249 40.866 9.68 ≤  𝜇 ≤ 10.66 0.0000001 

0.251597 10000 50.14 17.496 0.175 57.978 9.80 ≤  𝜇 ≤ 10.44 0.00000001 
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Table no.2: Effect Size (d), Standard Error (𝑺𝒙) Test Statistic, Confidence Interval if n 

increases at Test Statistics,  𝝁 = 45 

Test Value = 𝜇 = 45 

Effect 

Size (d) 
n 𝑥 𝑠 𝑠𝑥 

Test 

Statistic 

95 % Confidence 

Interval 
p-value 

0.313435 10 56.90 18.57 5.87 2.03 -1.38 ≤  𝜇 ≤ 25.18 0.073 

0.023782 100 47.57 16.44 1.65 1.55 -0.71 ≤  𝜇 ≤ 5.85 0.124 

0.079683 500 50.17 17.60 0.79 6.57 3.63 ≤  𝜇 ≤ 6.72 0.0001 

0.081071 1000 50.23 17.62 0.56 9.39 4.14 ≤  𝜇 ≤ 6.32 0.00001 

0.065677 2000 49.65 17.56 0.39 11.85 3.88 ≤  𝜇 ≤ 5.42 0.000001 

0.079476 5000 50.17 17.60 0.25 20.78 4.68 ≤  𝜇 ≤ 5.66 0.0000001 

0.079567 10000 50.14 17.50 0.18 29.40 4.80 ≤  𝜇 ≤ 5.49 0.00000001 

 

Graph-1 shows that association of sample size and p-value make an 

exponential curve with large sample size and p-value will approach to 

negligible. Association(r) and coefficient of determination (r2) among sample 

size and p-value are r=0.9690 and 93.9%, which are recognized statistically 

strong relationship among them. This results help us to recommend sample 

size is a robust factor to reduce p-value gradually.   

 

Another significant observation is noted from the data analysis that 

effect size of all three tables remain unchanged at prescribed same sample size 

and test values 𝜇 = 40, 45, & 50. The standard error (𝑠𝑥) and sampling error (𝑒) 

is also decreasing with reference to sample size(n) and p-values, while 

population standard deviation 𝑠 gradually approaches constant around a fixed 

numerical value at increasing sample sizes.  

1 2 3 4 5 6 7

n 10 100 500 1,000 2,000 5,000 10,000

p-value 0.107 0.00000326 3.81E-29 5.12E-42 2.39E-61 1.72E-150 4.02E-286

n = 9.0572e1.0691(p-value)

r = 0.9690
r² = 93.9%

(5,000)

-

5,000 

10,000 

15,000 

20,000 

Graph 1: Sample Size and P-value Relationship, when test 
value 45

n p-value
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The test statistic value increases at prescribed sample sizes. The test 

statistic is directly proportion with sample size categorically in three cases. The 

test values 𝜇 = 40, 45, & 50 do not impact dramatically to change in effect size, 

population standard deviation, standard error, test statistic, sample means, 

sampling error and p-values. 

 

Table no.3: Effect Size (d), Standard Error (𝑺𝒙) Test Statistic, Confidence Interval if n 

increases at Test   Statistics,  𝝁 = 50 

Test Value, 𝜇 =  50 

Effect 

Size (d) 
n 𝑥 𝑠 𝑠𝑥 

Test 

Statistic 

95 %Confidence 

Interval 
p-value 

0.133983 10 56.90 18.57 5.87 1.18 -6.38 ≤  𝜇 ≤ 20.18 0.270 

0.021361 100 47.57 16.44 1.65 -1.47 -5.71 ≤  𝜇 ≤ 0.85 0.144 

9.7E-05 500 50.17 17.59 0.79 0.22 -1.37 ≤  𝜇 ≤ 1.72 0.827 

0.000177 1000 50.23 17.62 0.56 0.42 -0.86 ≤  𝜇 ≤ 1.32 0.679 

0.000387 2000 49.65 17.56 0.39 -0.88 -1.12 ≤  𝜇 ≤ 0.42 0.378 

9.25E-05 5000 50.17 17.60 0.25 0.68 -0.32 ≤  𝜇 ≤ 0.66 0.494 

6.72E-05 10000 50.14 17.50 0.18 0.82 -0.20 ≤  𝜇 ≤ 0.49 0.411 

 

19.7

5.16
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Similarly, we can clearly observe that Graph 3, and Graph 4 show the 

behavior among simple size & sample mean (𝑥), and sample size and Standard 

Error when test statistic  𝜇 =  45   

Most researchers aim to draw inferences about the mathematical 

characteristics of parameters from large and often unknown populations. Since 

studying an entire population is typically impractical, researchers rely on 

samples. Therefore, it is essential that these samples are properly 

representative and free from bias to ensure the validity of the conclusions. This 

issue must be addressed during the research design phase to enhance the 

quality of statistical decision-making. A well-designed sampling strategy leads 

to more accurate and reliable statistical conclusions, particularly when 

evaluating whether an outcome is statistically significant or not. Such 

conclusions should be based on appropriate threshold probability values (e.g., 

α = 0.05), supported by strong numerical evidence. 

Problems often arise in tests of statistical significance because 

researchers typically work with samples, not entire populations. Since 

conclusions are generalized from sample data to the broader population, it is 

crucial that the sample be representative. If the sample is biased, it can lead to 

incorrect or misleading results. 

To ensure valid inferences, the sample must accurately reflect the 

population’s characteristics. This is particularly important in fields such as 

economics, social sciences, and biomedical research, where decisions are often 

based on probabilistic reasoning. 

In most scientific disciplines, a result is considered statistically 

significant if it meets a confidence level of 95% (p < 0.05) or, in more rigorous 

cases, 99% (p < 0.01). These thresholds help determine whether observed 

effects are likely due to chance or represent real population-level patterns. 
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3.1 Is P-Value A Better Statistical Measure For Statistical Tests? 

P-values by themselves are insufficient for sound statistical judgment. 

Even though the p-value is frequently employed in hypothesis testing to 

evaluate statistical significance, it is neither the sole nor always the most 

trustworthy metric for determining unknown population parameters. P-values 

have several drawbacks, including their susceptibility to sample size and their 

incapacity to accurately represent the magnitude or practical significance of an 

impact. Therefore, in order to fully comprehend their data and guarantee more 

trustworthy results, researchers had to take into account complementary 

statistical tools. In statistical analysis, the following are some significant 

substitutes and supplements to the p-value: 

⮚ Confidence Intervals (CI) 

⮚ Effect Size 

⮚ Bayesian Statistics 

⮚ Likelihood Ratios 

⮚ Akaike Information Criterion (AIC) / Bayesian Information Criterion (BIC) 

⮚ Decision Trees / Classification and Regression Trees (CART) 

⮚ ROC Curves and AUC (Area Under Curve) 

⮚ Power Analysis 

⮚ Descriptive Statistics (Mean, Median, Variance, etc.) 

 

3.2 Why P-Value ≤ 0.05 Is A Threshold Value To Reject The Null 

Hypothesis? 

The commonly used threshold of p ≤ 0.05 in hypothesis testing is a 

convention, not a strict scientific rule. It is widely accepted across many 

disciplines as a benchmark for statistical significance, implying that there is a 

5% probability (or less) that the observed results could have occurred under 

the assumption that the null hypothesis is true. However, this threshold should 

not be treated as a "magic number." Relying solely on it can lead to 

misinterpretation and oversimplification of statistical evidence. Instead, the p-

value should be considered in the broader context of effect size, study design, 

replication, and practical significance. It includes some historical work as under: 

 

1. Historical Origins: 

⮚ The 0.05 threshold was popularized by Ronald Fisher in the 1920s. He 

suggested it as a convenient cutoff in his early work on statistical 

significance.  

⮚ It struck a balance between being too lenient (e.g., 0.10) and too strict 

(e.g., 0.01), making it a practical choice for early statisticians. Definition 

of the p-value: 
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⮚ The p-value measures the probability of observing data at least as 

extreme as the sample, assuming the null hypothesis is true. 

⮚ A p ≤ 0.05 means there is a 5% or lower chance that the observed 

result (or one more extreme) would occur if the null hypothesis were 

true. 

2. Error Rates: 

⮚ Using 0.05 as the significance level (α) implies that researchers accept 

a 5% chance of a Type I error—rejecting a true null hypothesis. 

⮚ It helps control the false-positive rate in scientific research. 

3. Tradition and Standardization: 

⮚ Over time, 0.05 became a widely accepted standard, making it easier 

for researchers to interpret and compare results across studies. 

4. Important Caveats: 

⮚ Arbitrary: There is nothing inherently special about 0.05. In many fields, 

other thresholds (like 0.01 or 0.10) are used depending on the context. 

⮚ Context Matters: In high-stakes testing (like medicine or aerospace), 

more stringent thresholds are often used. 

⮚ Misinterpretation: A p-value ≤ 0.05 does not prove the alternative 

hypothesis is true or to that the effect is meaningful—it just suggests 

that the observed data is unlikely under the null hypothesis. 

 

The critical point is not necessarily to change the chosen cutoff of p ≤ 

0.05—as there is no universally better alternative for most contexts. Rather, the 

key is for readers to recognize that 0.05 is an arbitrary threshold, and more 

importantly, to look beyond p-values when evaluating the validity of an 

experiment and the biological or practical significance of the results. It is often 

more informative to report the exact p-value rather than simply stating p ≤ 

0.05. For example, a result with p = 0.049 is roughly three times more likely to 

have occurred by chance than one with p = 0.016, yet both are commonly 

reported as p ≤ 0.05. This oversimplification can mask important differences in 

statistical significance and reliability of findings. 

Moreover, merely noting outcomes like p ≤ 0.05 does not give 

sufficient context regarding the extent of the effect or the accuracy of the 

estimations. When analyzing the results, it is more instructive to incorporate 

contextual elements (such sample size and study design), effect sizes, and 

confidence ranges. More solid and significant findings concerning the research 

are produced by this more comprehensive technique. Instead of depending 

only on the p-value threshold, which frequently results in inaccurate 

conclusions, this change encourages researchers to submit comprehensive 

statistical information. 
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3.3   Can Some Statistical Factors Better, Can Improve Results For P-

Values?  

There are various statistical techniques that can enhance the reliability 

and clarity of p-values in hypothesis testing. These approaches can address 

prevalent issues like multiple comparisons, limited sample sizes, and 

misunderstanding of statistical significance, resulting in more robust research 

findings. Below is a polished version of our paragraph, accompanied by an 

explanation of essential strategies. 

Various statistical techniques can improve the reliability and clarity of 

p-values in hypothesis testing. These techniques seek to tackle prevalent 

problems such as multiple comparisons, limited sample sizes, and the incorrect 

interpretation of statistical significance. Implementing these techniques 

enables researchers to make more precise statistical choices and reach 

trustworthy, valid conclusions for both unknown and specified populations. 

Below are some essential methods to enhance the understanding of p-values 

and statistical decision-making: 

⮚ Adjusting for Multiple Comparisons 

⮚ Addressing Small Sample Sizes 

⮚ Reporting Effect Size and Confidence Intervals 

⮚ Utilizing Bayesian Methods 

⮚ Improving Data Quality 

 

By adopting these techniques, researchers can improve the reliability 

and clarity of p-values, resulting in more dependable statistical evaluations and 

well-informed decision-making. This methodology guarantees that 

conclusions are not just statistically sound but also significant and pertinent to 

the context, thereby enhancing the quality and influence of the research. 

 

3.4  Limitation of P-Value 

A major drawback of utilizing p-values is that they do not convey any 

details regarding the practical significance or real-life relevance of the findings. 

They solely indicate whether the results are statistically significant, which may 

not accurately represent the magnitude or importance of the effect observed. 

To evaluate the quality and credibility of an analysis, it is crucial to also take 

into account additional factors, including sample size, effect size, confidence 

intervals, and possible sources of error or bias. 

Additionally, p-values are frequently misinterpreted or misapplied by 

both researchers and readers, resulting in erroneous or misleading inferences. 

Common misunderstandings include: 
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● The p-value represents the likelihood that the null hypothesis is 

accurate. 

● This is a crucial misconception—p-values indicate the probability of 

obtaining the observed data, assuming the null hypothesis is true, not 

the likelihood that the null hypothesis itself is valid. 

● The p-value indicates the magnitude of the effect or the strength of 

the association. 

● P-values do not give any insight into the size of the observed effect. 

To assess this, researchers should utilize measures of effect size. The 

p-value is a measure of the explicit-ability or reliability of the results. 

● The p-value does not indicate the extent to which the data can 

elucidate or replicate the results, nor does it offer any indication of the 

experiment's reliability. The p-value reflects the importance or 

relevance of the findings. 

● The p-value fails to consider the real-world consequences of the 

findings. It serves to highlight the significance or relevance of the 

findings. However, a statistically significant outcome does not 

inherently imply that the effect is of practical importance or relevance. 

 

These misunderstandings occur because the p-value is determined 

exclusively by the data and the statistical test applied, without taking into 

account any prior knowledge or beliefs regarding the hypotheses. Additionally, 

it does not indicate the direction or size of the effect, nor does it assess the 

clarity or significance within the study's context. This highlights the limitations 

of p-values and underscores the necessity of incorporating alternative 

statistical metrics and contextual considerations for a more thorough 

interpretation of research findings. We are interested in delving deeper into 

these misconceptions or exploring potential strategies to mitigate them in 

research methodologies. 

 

4.        CONCLUSION 

P-Values serve as a valuable instrument for comparing outcomes 

across various studies and variables, allowing analysts to determine which 

results are statistically significant. In disciplines such as medicine, economics, 

and engineering, p-values are crucial for making informed decisions based on 

data, assisting researchers in steering clear of conclusions derived from 

anecdotal or biased information. The p-value measures the probability of 

observing the given data (or more extreme results) assuming the null 

hypothesis holds true. By establishing a standardized threshold (commonly set 

at 0.05), p-values provide a definitive method for deciding whether to reject 
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the null hypothesis. This standardization fosters consistency across studies, 

enabling researchers to make trustworthy comparisons and draw conclusions 

across diverse research contexts and fields. 

Multiple critical elements affect the p-value and its effectiveness in 

enhancing the quality of data analysis and decision-making. It is crucial to 

comprehend and control these elements to achieve precise, dependable, and 

significant statistical results. These include: 

1. The size of the sample (n): It has a direct impact on the accuracy of the 

estimate. A larger sample size can identify even minor, potentially 

insignificant effects and produce a statistically significant p-value, whereas 

a smaller sample may overlook important differences.. 

2. Effect Size: The p-value is affected by the strength of the effect or 

association under examination. More substantial effects tend to produce 

smaller p-values, whereas minor effects may fail to achieve significance 

unless the sample size is adequately large.. 

3. Variance in Data: High variability or noise within the data can elevate the 

standard error and distort the p-value, thereby complicating the 

identification of a genuine effect. 

4. Significance Level (α): The selected significance threshold, typically set at 

0.05, establishes the criterion for determining when results are deemed 

statistically significant. It is important to note that this threshold is arbitrary 

and should be adjusted according to the context of the study and the 

implications of potential decision errors.. 

5. The design and methodology of a study: These are crucial; inadequate 

or biased designs can result in systematic errors that compromise the 

validity of p-values. Effective randomization, blinding, and controlling for 

confounding variables are vital for drawing accurate conclusions. 

6. Multiple Comparisons: When multiple hypotheses are tested 

simultaneously, the chance of a false positive (Type I error) increases. 

Without proper adjustments (e.g., Bonferroni or FDR correction), 

researchers risk drawing incorrect conclusions. 

7. Data Cleaning and Pre-processing: Outliers, missing values, and data 

entry errors can distort results. Careful pre-processing ensures that p-

values reflect genuine patterns in the data, not artifacts. 

8. Underlying Assumptions of the Test: P-values are only valid if the 

assumptions of the statistical test (e.g., normality, homoscedasticity, 

independence) are met. Violations can lead to incorrect inferences. 
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Despite its widespread use, the p-value is often misinterpreted. A p-value does 

not: 

⮚ Represent the probability that the null hypothesis is true. 

⮚ Indicate the size or importance of an effect. 

⮚ Reflect the reliability of the data or the study design. 

⮚ Account for bias or confounding. 

 

Rather, the p-value is the probability of observing data as extreme as 

(or more extreme than) the actual data, assuming the null hypothesis is true. It 

measures the compatibility of the observed data with the null hypothesis—not 

its truth. Moreover, there is a common tendency to oversimplify p-values into 

binary outcomes of “significant” or “not significant” based on whether they 

cross the 0.05 threshold. This practice can be highly misleading, especially 

when: 

⮚ Small but clinically trivial effects appear significant due to large sample 

size. 

⮚ Large and meaningful effects are dismissed due to underpowered studies. 

 

There is also the temptation for "p-hacking" or fishing expeditions, 

where researchers test numerous variables until something meets the p < 0.05 

criterion. Without correction for multiple testing, the likelihood of false 

discoveries increases sharply. 

In conclusion, while p-values remain a useful tool, their interpretation 

must be contextualized with other statistical measures (such as confidence 

intervals and effect sizes) and guided by strong study design and 

methodological rigor. Sole reliance on p-values—especially without 

understanding their assumptions and limitations—can lead to misleading 

conclusions and poor scientific practices. 

Similarly above factors (discussed in Introduction section) are involved 

to effect poor or strong achievement of p-values. Therefore, researchers and 

investigators cannot ignore or missing them during their research design 

processes. 
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